

Multi-pipe Units with Screw Compressors

Model RTMA
Cooling capacity 370 - 730 kW
Heating capacity 410 - 950 kW

RTMA multi-pipe units

Simultaneous heating and cooling with one product

Standard versions

- Acoustic packages: low noise or super low noise
- Different built-in hydraulic kits available with cooling and heating circuit pumps of 150/250/450 kPa

TO BE COMBINED WITH STANDARD VERSIONS

LN: Low noise with condensing control with reduced fans speed and sound compressors box.

SL: Super low noise with condensing control with variable fan speed modulation, oversized coils, muffler on the compressor intake and delivery lines and sound insulated compressor box.

Unit description

- · Semi-hermetic screw compressors
- ECO profile axial fans, statically and dynamically balanced
- Water side evaporator direct expansion shell and tube type with water connections (complete with differential pressure switch and electrical heater)
- Recovery heat exchanger direct expansion shell and tube type with water connections
- High efficiency condenser coils with seamless copper tubes and alluminium fins

- · Electronic expansion valve
- · Double set point temperature
- Condensing and evaporating pressure control with variable fan speed modulation for external temperature up to -15°C
- Microprocessor
- Galvanised steel base frame and panels in powder painted galvanised steel sheet for outdoor installation

Options and accessories

Factory-mounted options

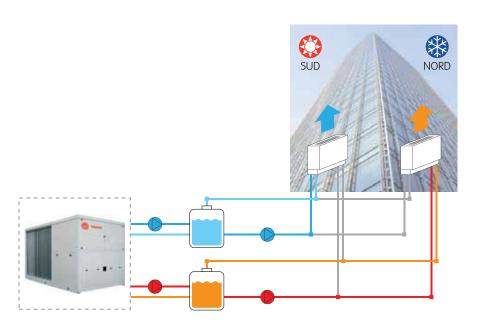
- Standby pump for air conditioning circuit + standby pump for heating circuit, 150 / 250 / 450 kPa
- · High temperature module for hot water up to 65°C
- Automatic circuit breakers
- Softstarter
- · Numbered wires
- Gas gauges
- Power factor correction to cos phi 0.91
- Control panel electric heater with thermostat
- · Phase failure protection relay
- EC fan motors
- · High static pressure (100 Pa) EC fans
- · Condensing coil protection grille

- · Epoxy coated condensing coils fins
- Copper/copper condensing coils
- Tinned copper/copper condensing coils
- · BLYGOLD treated coils
- · Pre painted condensing coils

Accessories

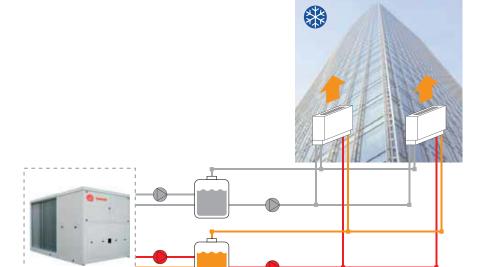
- · Remote control display
- · Flow switch
- Automatic water filling
- · Threaded stainer
- · Water gauges
- · Rubber anti vibration mounts
- Spring anti vibration mounts

Sustainability


The continuous drive to improve energy efficiency of building systems requires an optimal balancing in the demand and supply of both heating and cooling. Trane's multi-pipe units can simultaneously deliver heating and cooling. A sustainable solution for many applications.

Operating modes

e or


Chiller only mode

Production of chilled water for air conditioning use.

Chiller mode + partial or total heat recovery

Simultaneous production of chilled water on the evaporator and hot water from heat recovery exchanger.

Heat pump only mode

Hot water production for air conditioning use.

TEC: Total Efficiency Coefficient

The best coefficient measuring the unit performance during the whole year is the TEC coefficient. It represents the total seasonal efficiency properly developed to measure the multifunction real efficiency. The TEC indicator is calculted on the base of the efficiencies of each operating mode of the unit and properly weighted (cooling, cooling + heating).

Equation For TEC calculation

$$\mathsf{TEC} = \mathsf{EER}_{\mathsf{COOLING}} \, * \, \alpha + \mathsf{DMEC}_{\mathsf{COOLING} + \mathsf{HEATING}} \, * \, \beta + \mathsf{COP}_{\mathsf{HEATING}} \, * \, \gamma$$

 α, β, γ = weight for operating modes (%)

DMEC = Dual Mode Efficiency Coefficient

DMEC = sum of the heating plus cooling capacity divided by total compressors power input (in chiller + recovery mode)

Max. value is reached when heating and cooling loads are fully balanced.

Possible operating combinations									
Circuit 1	Circuit 2	Cooling capacity	Heating capacity						
Chiller	Off	50%	0%						
Chiller	Chiller	100%	0%						
Chiller	Chiller + total recovery	100%	50%						
Chiller + total recovery	Chiller + total recovery	100%	100%						
Heat pump	Chiller + total recovery	50%	100%						
Chiller + total recovery	Off	50%	50%						
Heat pump	Heat pump	0%	100%						
Off	Heat pump	0%	50%						

General technical data

RTMA			105	115	120	130	150	170	180	190	210	
Cooling (1)												
Cooling capacity		kW	368.70	407.70	426.00	463.50	529.20	594.20	626.20	666.30	733.50	
Compressors power input		kW	113.50	127.20	131	137.10	156.10	168.80	182.40	193.40	214.50	
Total EER (incl.fans)			2.94	2.93	2.92	3.05	3.04	3.18	3.12	3.11	3.12	
Heating (2)												
Heating capacity		kW	411.80	464.10	484.10	527.50	594.10	675.70	699.40	718.10	811.90	
Compressors power input		kW	113.00	127.90	133.40	137.90	153.80	172.30	183.40	194.00	211.90	
Total COP (incl.fans)			3.29	3.32	3.26	3.45	3.46	3.55	3.47	3.34	3.49	
Cooling + Heating (3)												
Cooling capacity		kW	368.70	407.70	426.00	463.50	529.20	594.20	626.20	666.30	733.50	
Heating capacity		kW	482.20	534.80	549.80	600.60	685.30	763.00	808.60	859.70	947.90	
Compressors power input			113.50	127.20	131	137.10	156.10	168.80	182.40	193.40	214.50	
DMEC			7.50	7.40	7.50	7.80	7.80	8	7.90	7.90	7.90	
TEC			5.30	5.30	5.40	5.50	5.50	5.70	5.60	5.60	4.50	
Number of refrigerant circuits		2	2	2	2	2	2	2	2	2		
Number of screw compressors		2	2	2	2	2	2	2	2	2		
Sound pressure level (4)		dB(A)	60	60	60	60	62	62	62	63	63	
Sound power level		dB(A)	92	92	93	93	95	95	95	96	96	
Sound pressure level (4)	SL	dB(A)	55	55	55	55	57	57	57	58	58	
Sound power level	SL	dB(A)	87	87	88	88	90	90	90	91	91	
Maximum power input		kW	202.40	214.10	217.60	229.40	254.10	281.20	317.60	321.20	357.60	
Maximum full load current		А	344.00	364.00	370.00	390.00	0.00 432.00 478.00 540.00 546.00 608.00		608.00			
Full load starting current A		A	589.00	618.00	624.00	644.00	764.00	844.00	906.00	912.00	761.00	
Electrical power supply	ower supply V/Ph/Hz 400/3+n/50											

⁽¹⁾ Outdoor temp. 35°C; evaporator water temp. 12/7°C (2) Outdoor temp. 7°C 90% R.H.; condenser water temp. 40/45°C

⁽³⁾ Condenser water temp. in/out 40/45°C; evaporator water temp. in/out 12/7°C (4) Calculated according to ISO 3744 at 10 meters distance from the unit

Dimensions and weights

RTMA			105	115	120	130	150	170	180	190	210
A		mm	5431	5431	6601	6601	7572	7572	7572	8892	8892
В		mm	2250	2250	2250	2250	2250	2250	2250	2250	2250
С		mm	2400	2400	2400	2400	2400	2400	2400	2400	2400
Shipping weight		kg	5242	5449	5728	5792	6580	6925	6945	7200	7794
Shipping weight (1)	Single pump 150 kPa pressure head	kg	311	311	311	396	432	486	486	534	534
Shipping weight (1)	Single pump 250 kPa pressure head	kg	357	357	357	408	408	574	574	622	622
Shipping weight (1)	Single pump 450 kPa pressure head	kg	399	399	399	450	450	844	844	892	892

(1) Extra weight for hydraulic versions

Trane® is a brand of Ingersoll Rand®. Ingersoll Rand (NYSE:IR) advances the quality of life by creating comfortable, sustainable and efficient environments. Our people and our family of brands—including Ingersoll Rand®, Trane®, Thermo King® and Club Car® — work together to enhance the quality and comfort of air in homes and buildings; transport and protect food and perishables; and increase industrial productivity and efficiency. We are a global business committed to a world of sustainable progress and enduring results.

engineer.trane.com

trane.com

ingersollrand.com